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Abstract
We study the nucleation dynamics of a model solid state transformation and the criterion for
microstructure selection. Using a molecular dynamics (MD) simulation, we had shown that the
dynamics of the solid is accompanied by the creation of transient non-affine zones (NAZ),
which evolve with the rapidly moving transformation front. Guided by our MD results, we
formulate a dynamical continuum theory of solid state transformation, which couples the elastic
strain to the non-affine deformation. We demonstrate that our elastoplastic description recovers
all qualitative features of the MD simulation. We construct a dynamical phase diagram for
microstructure selection, including regimes where martensite or ferrite obtains, in addition to
making several testable predictions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The dynamics following a quench across a solid state structural
transition results in a variety of microstructures depending on
the rate and depth of quench. A key question in the physics of
solid state nucleation is to understand the dynamical criterion
for microstructure selection. In an MD simulation of a model
solid [1] (Part I), we motivated and described our search for
new dynamical variables, which in addition to the conventional
elastic strain fields, would describe the dynamics of solids
following a quench. The new dynamical variables, identified
as non-affine zones (NAZ), were shown to be generated by
the nucleation process; their fast dynamics governed the final
microstructure of the solid. In this part II, we formulate a
continuum dynamical theory of microstructure selection based
on the coupling between the non-affine variables and elastic
strain.

Our MD simulations of the model solid undergoing a two-
dimensional square to rhombic structural transition (Part I)
reveal four principles which form the basis for an elastoplastic

theory (section 2). (i) The product solid grows within the
parent matrix following heterogeneous nucleation. (ii) The
onset of nucleation produces both order parameter (OP) strains
(shear and deviatoric) and non-order parameter (NOP) strain
(volumetric), the latter being slaved to the former. (iii) The
transformation is accompanied by zones of transient plasticity
called non-affine zones (NAZ), whose dynamics determine the
microstructure. (iv) NAZs are produced when the local stress
exceeds a threshold.

This elastoplastic theory, specialized to the case of the
square to rhombus transition (section 3), reproduces the
dynamics and patterning of the strain (both OP and NOP) and
NAZs in [1]. We exhibit a non-equilibrium phase diagram
(section 4) showing the two classes of microstructures, namely,
a twinned, anisotropic martensite and an untwinned, isotropic
ferrite, obtained in our MD simulations. In the limit of slow
dynamics of plasticity, the elastoplastic description becomes
identical to the strain-only theory [2], as long as it is coarse-
grained over scales larger than λ, the typical size of the NAZ
(section 5).

0953-8984/08/365211+10$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/36/365211
http://stacks.iop.org/JPhysCM/20/365211


J. Phys.: Condens. Matter 20 (2008) 365211 A Paul et al

Figure 1. Pictorial representation of the dynamics of the plastic
strain eP

1 as a function of the local volumetric stress σ1 for a typical
flowing solid (solid line) and the simplified form (13) used in our
computations (dashed line).

2. Elastoplastic theory of solid state nucleation

To describe the solid state transformation with elastic and
plastic strains, we first write the total strain tensor as ε ≡
{ε A

T , εV }, where the affine OP or transformation strain ε A
T

connects the parent and product lattices, and the NOP strain
εV is split into an affine part and a non-affine or plastic strain,
εV = ε A

V − εP
V (we have dropped the tensor indices for clarity).

Note that our association of plasticity with the NOP strain
alone follows from Part I. However, as we remarked, this could
be special to the square-to-rhombus transformation. In general,
there could be plastic deformations associated with the OP
strain too; we will comment on this in section 5.

The transformation is described by a free-energy
functional

F =
∫

r
fT ({ε A

T }, {ε A
V }, {∇ε A

T }, {∇ε A
V })+ fc({ε A

T }, {εV }) (1)

where the homogeneous part of the free-energy density
fT ({ε A

T }, . . .) has three minima corresponding to the parent
phase ε A

T = 0 and (symmetry-related) variants of the product
phase, ε A

T �= 0. The functional F is constructed from invariants
of the smallest symmetry group containing the symmetries
of the parent and product as subgroups, and is in general
nonlinear in the strains. In the absence of plastic deformations,
a variation of (1) with respect to ε A

V , gives the desired relation
connecting the OP and the NOP strain.

The driving force for ε A
T is the chemical potential gradient

δF/δε A
T to form the rhombic phase. The dynamical equations

for the order parameter strain, which includes dissipation and
inertia, take the general form [2]

�(ε A
T , ε̇

A
T , ε̈

A
T ; εV ) = 0. (2)

The dynamics of the affine NOP strain is slaved to the OP
strain. This takes the form of a local force balance [3]:

∇ · σV = 0 (3)

where the local NOP stress σV is related to the instantaneous
equilibrium value of the NOP strain:

σV = ∂F
∂ε A

V

. (4)

The dynamical equations for the plastic NOP strain εP
V are

constructed phenomenologically following the principles listed
above. We include the physics of threshold stress and yield
flow by a constitutive relation between stress and strain rate
(see figure 1):

ε̇P
V = 1

h
f1(σV ) if g(σV − σV c) > 0

= f2(σV ) otherwise (5)

where h and σV c are material parameters and g(σV ; σV c) is
the appropriate (material-dependent) threshold or yield crite-
rion [4], which in principle can incorporate history dependence
and ultimately account for the observed dependence of mi-
crostructure on external factors like the quench depth and rate
of quench. Within our elastoplastic model this connection may
be made either using experimentally fitted parameters, or us-
ing quantities obtained from molecular dynamics calculations
by a systematic coarse-graining procedure or, finally, derived
from a more microscopic non-affine field theory (see, for ex-
ample, [5]). We hope to carry out the latter program in detail
in a future study. In general, the function f2(σV ) allows for
the possibility that the solid exhibits finite ‘creep’ (ε̇P

V �= 0 at
σ = 0) (5). In the next section, we will, however, set the creep
to zero, as motivated by our MD results, figure 7 of [1], and
make the simplified ‘Newtonian’ ansatz, f1(σV ) = σV , when
|σV | > σV c. For this case the parameter h is related to the re-
laxation time of plastic flow. The ratio of the stress to strain
rate, σ/ε̇P

V = η, is a bulk viscosity. At the yield stress, this
viscosity diverges, signifying jamming. Note σ is an internal
stress and can therefore locally decrease and increase once the
solid yields, giving rise to oscillatory behavior, as seen in fig-
ure 7 of [1].

Finally, owing to plasticity, the local affine strains do
not satisfy the usual St. Venant’s compatibility [6]—instead,
the amount of incompatibility is exactly accounted for by the
amount of plasticity generated. This implies that the local St.
Venant’s condition should be rewritten as [7]

∇ × (∇ × ε)† = 0 (6)

where ε is the total strain, which includes εP
V . In regions where

the local plastic deformation is zero, this reduces to the usual
St. Venant’s compatibility condition.

The equations of constraint, (3) and (6), are used to
express ε A

V in terms of ε A
T ; equations (2) and (5) are then used

with appropriate initial conditions to describe the elastoplastic
theory for the dynamics of solid state transformations.

To initiate heterogeneous nucleation, one needs to
introduce random ‘seeds’ into the deterministic equations (2)
and (5). This is done via initial conditions in the local strain
ε A

T or the local stress σV . A random initial distribution of the
stress σV can produce local plastic strain eP

V , if the local σV

is larger than the yield stress. This will in turn nucleate the
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transformed solid via ε A
T . The results obtained from solving the

dynamical equations must then be averaged over realizations
of the quenched random stress field. A simpler strategy is to
directly introduce a seed in the transformation strain, ε A

T , by
creating a small twinned region with a single twin boundary
(since the dynamics of ε A

T is conserved). This allows us to
follow the subsequent dynamics in precise detail and does not
require any averaging over noise realizations.

We use the elastoplastic model to address two separate but
related issues. We will first determine the late time morphology
and microstructure of the growing nucleus following a quench
across the structural phase boundary and construct a dynamical
phase diagram akin to figure 2 of our MD simulation [1] or
figure 4 of [8]. We compute the shape of the growing nucleus
from the shape asphericity A = (λ1 − λ2)/(λ1 + λ2), where
λi are the eigenvalues of the moment of inertia tensor of the
nucleus [1]. For a circular (isotropic) nucleus λ1 = λ2 and A =
0, while for highly eccentric ellipses A → 1. By quenching
into different regions of the dynamical phase diagram, we will
study the dynamics by which a specific microstructure gets
selected.

3. Elastoplastic theory: square to rhombus
transformation

We use the above formalism to describe the specific square to
rhombus transformation, so as to be able to make a detailed
comparison with the results of our MD simulation. The
square to rhombus transformation is a special case of the
square (p4mm) to oblique (p2), and is thus described by two
order parameter strains characterizing the 4-degenerate product
phases. In general, one can construct a Landau theory for this
transition [9] using terms up to sixth order in the OP strains
eA

T = {e2, e3} and quadratic in the NOP strain εV ≡ e1. Here
e1 = exx + eyy , e2 = exx − eyy and e3 = exy = eyx . We
then decompose the NOP strain into a slaved, affine NOP strain
ε A

V ≡ eA
1 and a dynamical non-affine NOP strain εP

V ≡ eP
1 ,

enabling the total NOP strain to be written as e1 = ε A
1 − εP

1 .
In order to compare with the results and phenomenology

of the MD simulation of the model solid described in [1],
we look at a restriction of this problem. Recall that our
microscopic potential supports two rather than the possible
four product minima [1]. This implies that, for this choice
of potential, there is therefore only one minimum in the e2

direction; it thus suffices to retain up to quadratic terms in
e2 in the strain free-energy functional. The minimal free-
energy functional, sufficient to describe this square to rhombus
transition, is given by

F = 1
2

∫
dxdy[a1(e1 + eP

1 )
2 + a2e2

2 + a3e2
3

+ c1(∇(e1 + eP
1 ))

2 + c2(∇e2)
2 + (∇e3)

2 − e4
3 + e6

3] (7)

in terms of the OP strains e3 and e2 and the NOP strain e1. The
only other term to quadratic order in e2, namely e2

2e4
3, has been

dropped as it does not influence the phase transition. The three
elastic constants a1 = K11 + K12/2, a2 = K11 − K12/2 and
a3 = 2K44 define the linear elasticity of the square phase with
K11, K22 and K44 being the conventional elastic constants of a

solid with square symmetry [3]. The coefficients of the quartic
and sixth-order terms as well as that of ∇e3 can be scaled to
unity by rescaling e1, F and the spatial coordinates (x, y). The
coefficient a3 represents the degree of under-cooling; we work
in a parameter range where the square crystal is metastable and
the rhombic crystal is stable at equilibrium. Finally, note that
all the parameters in (7) may, if so desired, be obtained for any
particular material by fitting, for example, to standard neutron
scattering data [2].

The affine NOP strain is slaved to the OP strains; we make
use of the conditions of mechanical equilibrium (∇ · σ = 0)
and modified St. Venant compatibility to express eA

1 in terms
of e2 and e3:

∇2e1 − (∇2
x − ∇2

y)e2 − 4∇x∇ye3 = 0. (8)

The relation between the total NOP strain e1 and the OP strains
e j , j = 2, 3 is most conveniently expressed in k-space:

ẽ1(k) = Q̃1 j(k)ẽ j (k) (9)

with the kernels

Q̃13(k) = 4a2 − 2a3

a1 + a2

kxky

k2

= q13
kxky

k2
, (10)

and

Q̃12(k) = −a3 − 2a2

2a1 + a3

k2
x − k2

y

k2

= −q12

k2
x − k2

y

k2
. (11)

In effect, the above equations of constraint connect the
instantaneous eA

1 to the dynamical eP
1 , e2 and e3.

We now specify the dynamics for the OP strains and the
plastic NOP strain. At this stage we make the approximation
of replacing the value of the OP e2 by its value at equilibrium,
i.e. e2 = 0, for all times. This greatly simplifies the
calculation without changing the physics. The dynamical
equation for the affine OP strain e3 may be derived from
Newton’s laws [2] incorporating dissipation via a Rayleigh
dissipation functional [3]:

∂2e3

∂ t2
= ∇2

[
δF
δe3

+ γ
∂e3

∂ t

]
, (12)

where γ is a solid shear viscosity.
The dynamics of the plastic NOP strain are determined by

the phenomenological equation:

ėP
1 = 1

h1
σ1 if |σ1| > σ1c

= 0 otherwise (13)

where the local stress σ1 = δF/δe1 and we have, for
simplicity, chosen the ‘Newtonian’ ansatz with a simple
threshold criterion, with yield stress σ1c .

We solve the dynamical equations (12) and (13)
numerically; details of the computation and the results
obtained are provided in the next section.

3



J. Phys.: Condens. Matter 20 (2008) 365211 A Paul et al

(a) (b)

FERRITE

MARTENSITE

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 20 40 60 80 100 120 140 160 180

t

A

20

16

18

14

12

10

8

6

4

2

0

σ1c

0.1 1 10 100 1000
h1
γ

Figure 2. Results from the numerical solution of the dynamical equations in a 128 × 128 grid with a time step δt = 0.002. The parameters for
this calculation are a1 = 100, a2 = 1, a3 = 0.01, γ = 5. (a) Shape asphericity A of the growing nucleus as a function of time t from the
elastoplastic model—bold line martensite and thin line ferrite. While the martensite nucleus remains eccentric, the ferrite nucleus becomes
isotropic (A → 0) at late times. (b) Dynamical phase diagram in the σ1c–h1 plane (expressed in units of a1
ε

A
1 and γ , respectively), starting

from the same (elliptical) initial seed. The shape asphericity A at later times and the order parameter strain e3 have been used to determine the
phases.

4. Elastoplastic theory: numerics and results

4.1. Algorithm for solving dynamical equations

We have used a simple real space scheme to obtain the
numerical solution of the partial differential equations (12)
and (13). This involves discretizing over a lattice of square
cells of size δx = 1. We have used 128 × 128 cells to obtain
the phase diagram (figure 2) and 512 × 512 cells for figures 3–
5. The initial value problem in time is solved using an Euler
scheme with a time step of δt = 0.002 which is sufficient to
avoid numerical instabilities. Below we give the sequence of
steps involved in the iteration of the discretized equations.
Step 1. We start with initial values for e3, its time derivative
ė3 and eP

1 defined over all the cells in our lattice and for time
t . First, we need to compute the (slaved) affine strain ε A

1 from
the OP strain e3 by solving (10). The affine strain eA

1 together
with the known eP

1 determines the total strain e1 at t . In real
space, (10) becomes

∇2e1(x, y) = ρ3(x, y, {e3}). (14)

Equation (14) is analogous to a Poisson equation for the
‘charge density’:

ρ3(x, y, {e3}) = q13
∂2

∂x∂y
e3(x, y) (15)

and we need to solve it for the (Dirichlet) boundary condition
e1 → 0 for x, y → ∞. This is done by discretization in
real space and by using an iterative scheme with a small over-
relaxation and a convergence criterion of 1 in 106 [10]. For
convenience in what follows, we refer to this solution using
the notation e1 = P({ρ3}).

Our numerics can be checked for accuracy by comparing
the results with those of simple choices for e3 for which eA

1 (the

same as e1) may be obtained analytically. For example, for e3

which is nonzero only within a square of size 2a, namely

e3(x, y) = e0�(a + x)�(a − x)�(a + y)�(a − y), (16)

(�(x) is the Heaviside step function) eA
1 is the electrostatic

potential for a set of four charges +e0,−e0,+e0 and −e0 at
the vertices of a square (a, a), (a,−a), (−a,−a), (−a, a) in
two dimensions. This is given by

eA
1 (x, y) = e0

2

[
ln

( [(x − a)2 + (y − a)2]
[(x + a)2 + (y − a)2]

× [(x + a)2 + (y + a)2]
[(x − a)2 + (y + a)2]

)]
. (17)

On the interfaces y = ±a and x = ±a it is easy to see
that eA

1 ∼ ±x (and ±y, respectively) except near the corners
where there are weak logarithmic singularities. Incidentally,
this linear approximation for eA

1 is the same as the initial value
of the density fluctuation φ(r, 0) used in [11] and [8]. The
presence of eA

1 modifies the interfacial energy of a rectangular
nucleus of martensite of length L and width W containing
N twins leading to the experimentally observed scaling law
L/N ∼ W 1/2 [11].

Our numerical result for eA
1 for the choice of e3 given

in (16) reproduces the analytic form (17) to within a few per
cent.
Step 2. Knowing the strain e1 at time t , we next update the
plastic strain eP

1 to the next time step t + δt by iterating (13).
For this, the local stress σ1 = a1e1 (plus any external stress if
present) is obtained for all the cells and is then used as input
to (13).
Step 3. Lastly, we have to update e3 and ė3 for which one needs
to compute the functional derivative

δF
δe3

= δF3

δe3
+ δF1

δe3
(18)

4
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(a)

(b)

(c)

(i) (ii) (iii)

Figure 3. Time development of the affine strain, stress and non-affine strain following a quench into the martensite phase for 512 × 512 cells
at (i) t = 30, (ii) t = 600 and (iii) t = 800, starting from an initial elliptical nucleus with a single twin boundary. The plasticity parameters
|σ1c| = 1 and h1 = 1 while the rest of the parameters are as before. (a) Profile of affine OP strain e3, showing the initial growth parallel to the
twin interface, followed by the dynamical addition of twins. Colors: yellow (white in the print edition) to black maps the range −1 < e3 < 1.
Brown (gray in the print edition) region denotes retained austenite, e3 = 0. (b) Corresponding profile of the local stress σ1. The local stress is
concentrated at the tips of the growing front where it approaches the threshold value σ1c (i) and (ii). In the interior of the growing nucleus σ1

relaxes to zero. Subsequently in (iii), the local stress gets large in regions where the new twins are being accommodated. Note the variation in
the signs of the stress in the direction along which new twins are added. Colors: yellow (white in the print edition) to black maps the range
−1 < σ1 < 1. (c) Corresponding non-affine strain eP

1 , showing the initial advection by the transformation front, and its dynamical emergence
as subsequent twins are added. eP

1 appears in regions where σ1 ∼ σ1c and σ1 ∼ −σ1c. Colors: yellow (white in the print edition) to black maps
the range −0.01 < eP

1 < 0.01.

where the two terms on the right-hand side represent functional
derivatives of the parts of the free energy (7) involving only e3

and e1, respectively. The first term is straightforward and is
given by

δF3

δe3
= −∇2e3 + e3 − 4(e3)

3 + 6(e3)
5, (19)

while the second term, after some algebra, can be shown to be

δF1

δe3
= a1P({ρ1})− c1ρ1 (20)

where

ρ1(x, y, {e3}) = q13
∂2

∂x∂y
e1(x, y). (21)

Note that (21) involves the total e1 which includes both affine
as well as the non-affine strain. Even if e3 = 0 to begin with,
at subsequent times e3 may be created due to the presence
of nonzero eP

1 . One encounters such a situation during the
heterogeneous nucleation of martensite near defect sites [12, 6]
with pre-existing eP

1 . Secondly, the resulting form for the
functional derivatives are highly non-local since they involve
repeated solutions of the Poisson equation. However, if eP

1
is large the total NOP strain e1 vanishes and the non-local
coupling between spatially separated regions of the OP e3

disappears.

4.2. Results: dynamical phase diagram

The most convenient comparison with the MD simulations
of [1] is made by following the dynamics upon seeding the

5
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Figure 4. Evolution of the local affine strain eA
1 (scale on right), the

local stress σ1 and the non-affine part of the strain eP
1 for a cell

� = (128, 100) on the twin axis following the quench into the
martensite phase shown in figure 3. Note the initial linear regime,
when σ1 ∝ eA

1 and eP
1 = 0, followed by oscillations in σ1 and the

creation of eP
1 as the stress σ1 rises to the threshold value σ1c = 1.

The resemblance to figure 8 from our MD simulations [1] is quite
apparent. We have multiplied eP

1 by 20 in order to make it visible.

metastable square solid with a tiny elliptical, twinned nucleus.
These calculations do not involve any imposed randomness or
noise. We shall discuss the effects of quenched noise in the
next section.

As in the MD simulation, we first obtain a dynamical
phase diagram demarcating the regions where a martensite or
ferrite is obtained upon quenching. This is done by studying
the shape of the nucleus, in terms of the shape asphericity A
defined before and twinning of the microstructure, in terms
of the affine OP strain e3. We focus on a special cut in

parameter space; we fix the coefficients appearing in (7) and
γ , and explore the dynamical phase diagram in the plasticity
variables, σ1c–h1 plane (figure 2(b)). The threshold stress
σ1c is expressed in units of a1
ε

A
1 (the affine stress at the

structural transition), and h1 in units of �2/γ (where �, the
thickness of the twin interface, has been taken to be 1). In
figure 2(a), we plot A as a function of time for an anisotropic
(twinned) nucleus and an isotropic (untwinned) nucleus; the
value of A at late times (figure 2(a)) and the profile of the
order parameter strain are used to map out a dynamical phase
diagram containing the martensite and ferrite, figure 2(b).

We discuss several novel features of this dynamical phase
diagram. For instance, even when the threshold stress σ1c

is zero, a martensite can form if the plasticity relaxation
rate is small (large h1) compared to the rate of growth of
the nucleus. This feature was already present in our earlier
calculation [8], where the dynamics of the local density
fluctuations determined the selection of microstructure and is
an inescapable feature of real martensites [13]. The phase
diagram, figure 2(b), is constructed for a fixed value of under-
cooling. As the degree of under-cooling changes, this phase
boundary changes slightly, but not a whole lot—the ferrite
being favored for low under-cooling. More significantly, the
plasticity relaxation time h1 increases with the lowering of
temperature. Thus, by starting out in the ferrite phase, one
can cross the phase boundary into the martensite by simply
lowering the temperature, identified as the martensite start or
Ms temperature. In addition, there is a well-defined plateau
yield stress over three decades in h1, suggesting that the yield
stress is independent of temperature over this range. This is
consistent with our MD simulations. Finally, it must be noted
that the dynamical phase diagram figure 2(b) is constructed
from the nature of the first critical nucleus that forms. In a
macroscopic sample, a ferrite nucleus may eventually nucleate

(a)

(b)

(i) (ii) (iii) (iv)

Figure 5. Time development of the affine and non-affine strain following a quench into the ferrite phase, at (i) t = 40, (ii) t = 200 and
(iii) t = 1000, starting from an initial elliptical nucleus with a single twin boundary. The plasticity parameters σ1c = 10−4 and h1 = 1, while
a3 = 0.1; the rest of the parameters are as before. (a) Profile of affine OP strain e3, which shows the initial elliptical nucleus growing
approximately isotropically. Colors: yellow (white in the print edition) to black maps the range −1 < e3 < 1. (b) Corresponding non-affine
strain eP

1 , showing its invasion into the ‘bulk’ of the growing polycrystalline nucleus. Colors: yellow (white in the print edition) to black maps
the range −0.01 < eP

1 < 0.01. (iv) (a) and (b) show e3 and eP
1 , respectively, for a very late time (t = 1600) ferrite nucleus in a 256 × 256

system with parameters a3 = 0.01, h1 = 0.1 and σ1c = 0. The stress σ1 is negligibly small for all (i)–(iv).

6
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and grow even in the martensite phase, once the plastic strain
eP

1 gets enough time to relax. This is consistent with our MD
simulations and agrees with results of isothermal quenching
experiments in real materials [14].

Having displayed the dynamical phase diagram we can
perform quenches to the martensite and ferrite phase, and
study the time development of the profiles of e3, σ1 and eP

1
(figures 3 and 5). Using plasticity parameters corresponding to
the martensite phase, figure 3 shows the temporal evolution of a
twinned nucleus, in perfect analogy with our MD simulations.
The nucleus initially grows parallel to the twin boundary
(figure 3(i)), while the stress σ1 approaches the threshold at the
growing tips. As a result the plastic strain eP

1 gets to be large
at these tips. As the nucleus grows, these highly stressed and
plastic regions are advected by the growing tips. In the interior
transformed region, the stress relaxes to a sub-threshold value
and the plastic deformation goes to zero. The sequence of
events exactly mimic the dynamics of the ε A

V , χ and NAZs
of figure 4 of [1]. To study the time evolution of the NAZs
in more detail, we focus on a single cell, �, midway within
our computation box, along (but not on) the twin boundary
of the initial seed within the untransformed square lattice.
With time, the growing tip of the nucleus approaches, and
then sweeps by, �, in the process transforming it into the
triangular phase. This situation is analogous to that shown
in figure 8 from our MD simulations [1]. We plot the local
e1, σ1 and eP

1 at � as a function of time t in figure 4. As in
figure 8 of [1], initially�, which lies ahead of the approaching
transformation front, begins to deform elastically due to stress
generated at the growing tip. The resulting volumetric strain e1

is proportional to the local σ1 and eP
1 = 0. As the tip of the

growing nucleus approaches �, σ1 rises and tends to cross the
threshold, σ1c . At this instant, eP

1 begins to form, reducing
σ1 to a value below σ1c. As the nucleus grows further, σ1

within� increases again—and the process repeats, producing a
local stress which oscillates rapidly in time. These oscillations
result from cooperative jamming and unjamming events caused
by alternating build-up of σ1 due to interface motion and its
relaxation by creation of NAZs [15]. The region of high (and
oscillating) local stress and the NAZ travels with the growing
tip, being advected by the moving transformation front. The
strong resemblance between figure 8 of [1] and figure 4 is
striking. Eventually, the interface crosses � and σ1, as well
as eP

1 , relaxes to zero within the bulk of the product phase.
The subsequent dynamics, figure 3(iii), goes beyond the

timescales accessed in the MD simulation. The dynamics
now proceeds perpendicular to the twin interface, adding
new twins (symmetrically disposed) as time proceeds. The
production of new twins with a fixed width is a consequence
of the anisotropic, non-local interactions connecting spatially
separated regions with nonzero e3.

Note that the affine NOP strain mediates the anisotropic,
long-ranged interactions [2]; the presence of the plastic NOP
strain screens this interaction, making it short range. The
emergence of the OP strain in the form of twins leads to an
increase in the local stress σ1, which in turn generates plastic
flow on crossing the threshold (figure 3(c)). The plastic strain,
once produced, reduces the value of the total NOP strain and,

therefore, that of the non-local interaction. In the case of
the martensite, this reduction is not complete. The stress σ1

decreases to zero in the interior of the martensitic nucleus,
so that any given region undergoes the same sequence of
transformations: untransformed → elastic distortion → non-
affine → transformed. This temporal sequence is also seen in
our MD simulations.

We now use plasticity parameters corresponding to the
ferrite phase; figure 5 depicts the time evolution of an isotropic,
polycrystalline ferrite nucleus, starting from the same initial
conditions as above. For small values of σ1c, the plastic strain
eP

1 is produced readily, and on average largely cancels out
the effect of the affine NOP strain. This significantly reduces
the magnitude and range of the non-local interactions, which
were responsible for producing the twins. The local stress
σ1 tends to cross the threshold (positive and negative) in the
interior of the growing nucleus, which leads to an invasion
of the non-affine strain eP

1 into the ‘bulk’ of the isotropically
growing, polycrystalline nucleus. This results in incoherent
grain boundaries in the interior of the growing nucleus. Note
that the symmetry of the pattern, figure 5, arises because the
evolution equations are deterministic; any noise would destroy
this symmetry and make the grain boundaries rough and orient
randomly. The sequence of events then exactly mimic the
dynamics of the ε A

V , χ and NAZs of figure 5 of [1].
We believe we have successfully constructed a general

elastoplastic description for the dynamics of solid state
transformations, which is capable of describing different
microstructures and addresses the issues of microstructure
selection. The qualitative picture that emerges from the
elastoplastic model closely resembles our MD simulation
results (Part I). In the next section, we will present a discussion
and some implications of our elastoplastic theory.

5. Discussion

By constructing a theory for microstructure selection, we
successfully bridge two apparently disparate descriptions of
the dynamics of ferrites and martensites within a unified
framework. This has been achieved at the cost of enlarging
the space of dynamical variables to include non-affine
deformations. Have we lost some of the special features
of martensites in the process? What implications does
our description of solid state nucleation and microstructure
selection have for conventional nucleation theory?

(i) Unified description of martensite and ferrite: Strain-
only theories [2] set εP

V = 0 and use (3) and (6)
to eliminate ε A

V in terms of ε A
T , leading to long-ranged

interactions and dissipation in ε A
T , both of which are

spatially anisotropic. This is ultimately responsible for
producing the twinned microstructure of martensites in
the strain-only description; the size of the twins is set
by elastic parameters alone [2]. These theories cannot
describe the occurrence of the ferrite. In our elastoplastic
description, inclusion of local plastic deformation in the
form of εP

V has two effects—it screens and isotropizes
the non-local interaction and dissipation kernel. This
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Figure 6. Close-up of a plot of the plastic strain eP
1 for a growing

martensite at t = 800 (same as in figure 3(c)(iii)). Note the presence
of NAZs with alternating signs of eP

1 accompanying the growing
martensite phase—see the region within the dashed lines. This figure
needs to be compared with figure 1 of [1]. When the strain fields are
coarse-grained over the length scale λ the contribution from these
alternating patches cancel and full elastic compatibility is restored.

is ultimately responsible for the destruction of the twin
pattern, resulting in a ferrite. Further, in contrast to strain-
only theories, the size of the twins depends on elastic, as
well as plastic, parameters. We provide a detailed analysis
of these effects in a forthcoming publication.

(ii) Emergence of average compatibility from the elastoplas-
tic dynamics: Our elastoplastic theory provides an under-
standing of how the strict local compatibility of strain-only
theories [2, 16] can be reconciled with the average com-
patibility of geometrical theories [17] when describing the
dynamics of the martensite. We find that, in the regime
where the martensite obtains, our dynamical equations re-
duce to the equations of the strain-only theories, when we
coarse-grain over a scale λ corresponding to the size of
the NAZs. Simultaneously, the equations of constraint,
namely the modified St. Venant’s condition (8), reduces to
the usual St. Venant’s elastic compatibility, provided we
coarse-grain over the same scale λ. This can be seen by
explicitly writing out (8):

∇2eA
1 − (∇2

x − ∇2
y)e2 − 4∇x∇ye3 = ∇2eP

1 .

In figure 6, we have re-plotted eP
1 for time t = 800

(figure 3(c)(iii)) in order to show the NAZs in detail.
Remarkably, the martensite plates are accompanied by
patches where eP

1 �= 0 and alternate in sign. If the
system is coarse-grained over a distance λ the effect of
these patches cancel and we recover the usual elastic
compatibility condition. This emergence of compatibility
upon coarse-graining over the scale of the plastic zone was
noted in [11]. As the critical stress σ1c increases, the size
of the NAZs decreases and so does the coarse-graining
length scale λ. Note that the coarse-graining appropriate
for the emergence of the usual elastic compatibility does
not wash out the twinned microstructure of the martensite;
the ‘phase’ of the averaging is so as to produce a planar
martensite–austenite interface as shown in figure 1 of [1].

(iii) Reversibility of martensitic transformations: How do we
reconcile the inevitable creation and evolution of plasticity
in the form of NAZs with the apparent reversibility of
martensitic transformations, as observed in shape-memory
alloys? Here we provide some preliminary comments,
which has been taken up in greater detail elsewhere [18].
In essence, microstructural reversibility in martensites
is related to the nature of the accompanying plastic
deformation. The key feature of plastic deformation in
the NAZs is that it is largely associated with the NOP
sector, which in turn is slaved to the transformation strain.
Indeed, even the slightest amount of plasticity in the OP
sector would make the transformation irreversible. This is
apparent in martensites involving Fe alloys, which do not
exhibit shape-memory4. Within our own model system,
a deep quench to the α = 0, v3 = 0 region produces a
triangular solid which is not related to the parent square
lattice by a group–subgroup relation [9]. During the
reverse transformation, therefore, there is no unique parent
lattice that the system can revert to. This produces non-
affineness in the OP sector due to a multiplicity of affine
paths and destroys reversibility.
The other relevant feature exhibited by the NAZs
associated with martensites is the special nature of the
particle trajectories [8, 1]. Particles in the NAZs formed
during martensitic growth move ballistically and in a
coordinated manner. It is these two properties of the
NAZs discussed here that ultimately renders the square to
rhombus martensitic transformation reversible, in spite of
significant transient and localized plastic deformation.

(iv) Inconsistency with Ostwald’s step rule: Ostwald’s step
rule of 1897 states that ‘the phase that nucleates need
not be the stable phase, but the one that is closest in
free energy to the parent phase... ’. This rule has been
interpreted by Stranski and Totomanov [20] to mean that
the phase which has the lowest free-energy barrier is
nucleated. While it is easy to appreciate the applicability
of this rule for phase transformations in simple systems
having a uniquely defined barrier crossing event along the
path of the transformation, it is more difficult to apply
such considerations to, say, atomic rearrangements and the
generation of NAZs where many barriers with different
attempt frequencies may be involved [21]. As discussed in
section 3, the selection of microstructure depends both on
parameters in the free-energy functional (7) and dynamical
parameters in (12) and (13). This is explicitly shown
in figure 2, where the microstructure depends on the
plasticity dynamics, in terms of the yield stress σV c and
viscosity h.

(v) Randomness and heterogeneous nucleation at defect
sites: The results presented in section 4, were
obtained with initial conditions corresponding to a small
elliptical nucleus and the choice of dynamical parameters
corresponding to martensitic and ferritic growth. An
alternate initial condition for the nucleation dynamics is to
prescribe a spatially random stress profile, e.g. a random

4 Finally, this question, and consequently reversibility, is determined by the
symmetry of the OP strains, see, for example, [19].

8



J. Phys.: Condens. Matter 20 (2008) 365211 A Paul et al

(a) (b)

Figure 7. Plot of the OP strain e3 for time t = 1000 for a martensite (a) with σ1c/a1
e1 = 2500 and for a ferrite (b) with σ1c = 0;
h1/γ = 0.1 for (a) and (b). The color scheme is as in figure 3(a). In both these calculations, a quenched, Gaussian, random stress σ1(r, t) with
zero mean and variance S1 = 10 was used to nucleate the product phase. Note that quenched randomness does not affect the overall
characteristics of the martensite at late times. The ferrite grains, however, become much smaller with grain boundaries which are broad
compared to the size of the grains.

σ ′
1. In real materials, this would correspond to frozen-in

defect structures. This quenched random stress would add
to the internal stress so that the total stress σ1 = a1(e1 +
eP

1 )+ σ ′
1. The initial stages of the dynamics of nucleation

and growth are sensitive to the initial distribution, which
we take from a Gaussian distribution with zero mean and
width S1.
For instance, if S1 
 σ1c, the threshold, inhomogeneous
elastic strains in e1 develop which initiate nucleation of the
product via its coupling to e3. As the dynamics proceeds,
local (total) σ1 gets enhanced at the transformation fronts,
giving rise to plastic deformations. On the other hand,
if S1 > σ1c, the threshold, then local regions can
develop appreciable plastic strains, equation (13). The
elastic coupling between eP

1 and e3 through the functional
derivative in equation (12) then causes the nucleation
of the product phase. The lag time for nucleation is
appreciably faster compared to when S1 
 σ1c. The
qualitative features of the phase diagram, figure 2, are
unaltered by the presence of quenched random stress
fields, though it ‘enlarges’ the regime over which the
ferrite phase obtains. Figure 7 shows that the ferrite
microstructure is altered; the grain sizes shrink and the
grain boundaries thicken with increased randomness. The
martensite microstructure, at the scale of the twin pattern,
is, however, unaltered, though again the distribution of
martensitic grains gets smaller with increased disorder.
This robustness of martensitic patterning over the scale of
the twins is significant and we wish to revisit this aspect in
a detailed study. We may mention here that there has been
several detailed studies of heterogeneous nucleation and
the possibility of spinodal-like ordering for the freezing
transition [22]. We plan to undertake similar studies in
the future for our system, especially for the case when the
jump in the order parameter during the transition becomes
small.

(vi) Dynamical phase diagram and TTT curves: The dynamics
of microstructure selection is conventionally represented

by a time–temperature–transformation (TTT) diagram,
constructed in the form of contour plots of the proportion
of each constituent (martensite or ferrite) as a function
of time during an isothermal transformation at different
quench temperatures [14, 12]. Figure 2 is the dynamical
phase diagram computed within our elastoplastic theory;
this can be converted to the typical TTT curve, provided
we know the temperature dependence of σ1c and
h1. Such a temperature dependence may be put in
phenomenologically, as in figure 4 of [8], or obtained from
a first-principles non-affine field theory.

(vii) Future work: It should be possible to extend our elasto-
plastic theory to include the effects of impurities such as
interstitial carbon in Fe (as in steel) [23], which under-
goes significant non-affine deformation [14]. Interstitial
carbon, represented by a diffusive concentration field ψ ,
would enter into both the dynamical equations for the
affine and non-affine strains. Thus any attempt to un-
derstand microstructure selection in systems such as steel
would involve the study of the coupled dynamics of the
affine strain, non-affine strain and concentration field ψ .

Finally, apart from restoring the full tensorial character
of the elastoplastic description, we need to explore in greater
detail the consequences of general thresholding and yield
flow in the plasticity dynamics accompanying solid state
transformations. In a later paper, we will discuss the dynamical
response of the transforming solid to time-dependent external
stresses (or strains), and periodic quenches across the phase
boundary.
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